

Optical Fiber Sensors Capable of Monitoring Harsh Subsurface Conditions for H₂ Storage Applications

Daejin Kim^{1,2}; Krista K. Bullard^{1,2}; Alexander Shumski^{1,2}; Ruishu Wright¹ (¹National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, PA 15236, USA; ²NETL Support Contractor, 626 Cochran Mill Road, Pittsburgh, PA 15236, USA)

Subsurface	 Subsurface hydrogen storage can be used to mitigate the impact of varying hydrogen production rates. 	
Hydrogen	 Subsurface hydrogen storage costs three to five times less than above-ground tank storage. 	
Storage	 Wellbore integrity monitoring is crucial to ensure safety and reliability. 	edx.netl.doe.gov/shasta

Optical Fiber Hydrogen Sensor

- \succ An optical fiber H₂ sensor coated with Pd nanoparticle/SiO₂ was developed.
- > A new filter layer was overcoated on the sensing layer to increase selectivity and mitigate humidity interference.

> Demonstrates reversible H₂ sensing capability at broad concentrations of H₂ at 80 °C, 99% RH which replicates the condition in the subsurface H_2 storage facilities.

> Shows negligible cross-sensitivity with CO_2 and CH_4 at 80 °C, 99% RH which are used as cushion gas in the subsurface H_2 storage facilities to maintain the minimum pressure.

UNIVERSITY OF PITTSBURGH INFRASTRUCTURE SENSING

IDDOIT CONTRACT. NEITHER THE UNITED STATES GOVERNMENT NOT DAV

Advantages of Optical Fiber Sensors

- **Stable** in subsurface harsh environments.
- **Safe** operation in the presence of flammable gases.
- Long reach, light weight, small size.
- **Functionalizable** for targeted parameters through functional materials.

Optical Fiber pH Sensor

> TiO₂ coated optical fiber pH sensor was demonstrated at high-temperature high-pressure (HTHP).

➤ Multi-phase HTHP autoclave for pH sensor testing

 \succ SEM image of TiO₂ coating after high pH testing at HTHP

- Gradual pressurization did not immediately impact the sensor response, even when rapidly depressurized.
- > After pressurization, the response rapidly jumps when the solution is exchanged.
- Compared to neutral conditions, basic pressure response is more stable to solution exchange.
- This may be thicknessdependent, as base exposure lowers coating thickness.
- Stress-based cracking from pressure may be decreased for thinner coatings.

