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• Successfully demonstrated use of optical fiber sensors for monitoring humidity, pressure, CO2, and 
corrosion in natural gas pipeline relevant conditions.

• Demonstrated SMF for monitoring humidity and CO2 along the jacketed portion of the fiber based on 
the strain changes, while unjacketed fiber section is used for monitoring pressure.

• The Fe-coated coreless fiber section acts as a corrosion sensor where the corrosion rate for different 
Fe film thickness was successfully measured based on the change in amplitude of backscattered light 
intensity. 

• The corrosion rate of Fe increased with increasing film thickness (28-225 nm range) possibly due to 
increase of roughness at higher thickness.  

Conclusions

• Estimated $13.4 billion is lost annually, primarily from corrosion in natural gas transmission pipeline 
infrastructure.

• Corrosion of Fe coated onto the coreless fiber section is detected based on the increase in 
amplitude of backscattered light intensity as Fe undergoes corrosion.

• Backscattered light can be measured in the time and frequency domains, allowing for 
distributed sensing responses to be collected.

• Internal corrosion in the natural gas transmission pipelines 
occurs through condensation of water droplets onto the pipe 
interior.

• Dissolved contaminants such as CO2, H2S, and salts 
elevate the corrosion rate.

• Strategies to better identify and quantify the causative 
factors behind corrosion and its real-time monitoring are 
necessary to minimize the corrosion caused loss and risks 
of possible catastrophic events.

Distributed Corrosion Sensing by Optical Backscattered Reflectometer (OBR):
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• A compressive microstrain is observed along the unjacketed SMF section with increasing dry N2 
pressure.

• A linear response between microstrain change with pressure is observed.
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• Corrosion is studied in CO2 saturated 3.5% NaCl solution, acidified with HCl (pH 3.2).
• Corrosion causes changes (increase) in backscattered light intensity amplitude as measured 

by OBR.
• Corrosion rate (Fe film thickness/time for complete corrosion) increases with the Fe film 

thickness. 

Distributed Corrosion Sensing

Background Humidity Sensing

• Microstrain along the jacketed SMF (SMF-28-ultra) increases with increasing relative humidity (RH).
• A good linearity between microstrain change and RH % is observed.
• Strain along the unjacketed fiber section remains unaffected by a change in RH.

Reference trace: 800 psig dry N2
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• Microstrain along the jacketed SMF (SMF-28-ultra) increases with increasing dry CO2 
concentration mixed with dry N2 at a total pressure of 800 psig. 

• Strain along the unjacketed fiber section remains unaffected by a change in CO2 composition.
• Strain changes along the jacketed SMF increase with pressure.
• A compressive microstrain is observed along the unjacketed fiber section.

Reference trace: 800 psig dry N2
Reference trace: 0 psig dry N2  
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CO2 Sensing

• The polymer jacket of commercially available single-mode fiber (SMF) undergoes strain changes 
due to absorption of water, CO2, and CH4 which can serve as a sensing layer.

• The unjacketed SMF section serves as a pressure sensor due to change in strain upon exposure to 
varying pressures, without contribution from the jacket.

• Metallic iron (Fe) coated onto the coreless fiber section spliced together with multi-mode fiber 
(MMF) serves as a corrosion proxy to the pipeline wall.

• Upon exposure to corrosive environment such as H+, Fe undergoes oxidative dissolution 
(corrosion) which is accompanied by hydrogen evolution reaction.
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Design of a single optical fiber with multiple functions

Proposed Optical Fiber Sensing for Pipelines 
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Pressure Sensing• Optical fiber-based sensing has lately been explored due to its advantages of small size, light 
weight, flexibility, improved safety in presence of flammable gases, inherent immunity to 
electromagnetic interference, and long-range and distributed sensing capabilities.

Multi-parameter Optical Fiber Sensor for Simultaneous Monitoring of Humidity, Pressure, CO2, and Corrosion
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