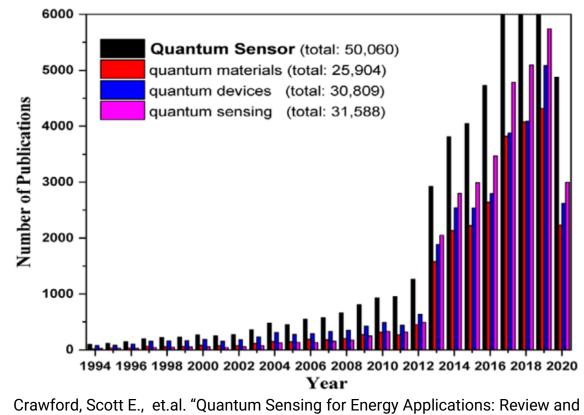


Quantum Sensing for (Energy) Infrastructure

Ryan Chaban Fellow, ARPA-E

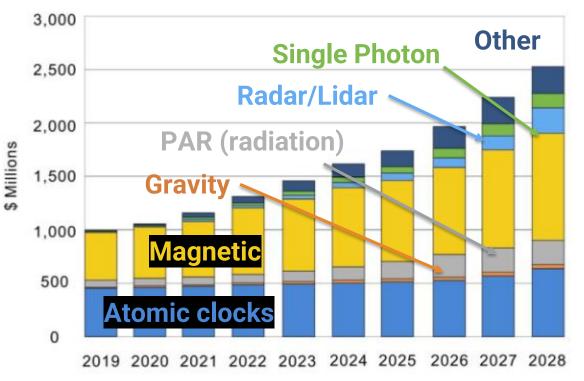

January 23, 2025

What is a quantum sensor?

- Exploiting the behavior or properties of a quantum system to increase the sensitivity compared to a classical sensor.
 - Decreased drift / less need for calibration
 - higher sensitivity or better S/N
 - Increased complexity
 - Larger and increased energy usage

A splattering of categories:

- Photonic vs. non-photonic (usually spin)
- Gravity, E-field, B-field, pressure, pH, conductivity, strain, force


Current State of the Art

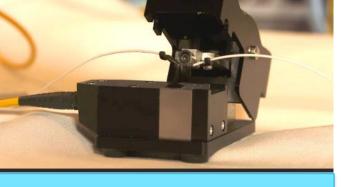
Technology	Implementation type	System description	Measured properties
Solid-state spins	NV ¹ center in diamonds	Spin of one electron localized in an insulator defect	Magnetic field, electric field, temperature, pressure, rotation
Neutral atoms	Atomic vapor	Atoms in the vapor cell sense changes in the environment	Magnetic field, rotation, temperature, electric field, frequency, acceleration, rotation
	Cold cloud	Laser-cooled atoms sense changes in the environment	
Superconducting circuits	SQUIDs ²	Difference in Cooper pairs between two islands of a Josephson tunnel junction	Magnetic field, electric field
Trapped ions ³	Single atoms	Mapping of motional amplitude to spin as sensor for electromagnetic fields	Magnetic field, electric field
	+ many o	ther subtypes	

Sensors sensitive to multiple variables – isolation required

Quantum Sensor Market is Growing

2023 study: \$0.7-1.0 Billion in 2030 (15% CAGR)³

Crawford, Scott E., et.al. "Quantum Sensing for Energy Applications: Review and Perspective." *Advanced Quantum Technologies* 4, no. 8 (August 2021): 2100049. https://doi.org/10.1002/qute.202100049. Insert Presentation Name 3



Future Applications

<u>Central question:</u>

Where can enhanced sensitivity meet a technological need and be a commercially viable?

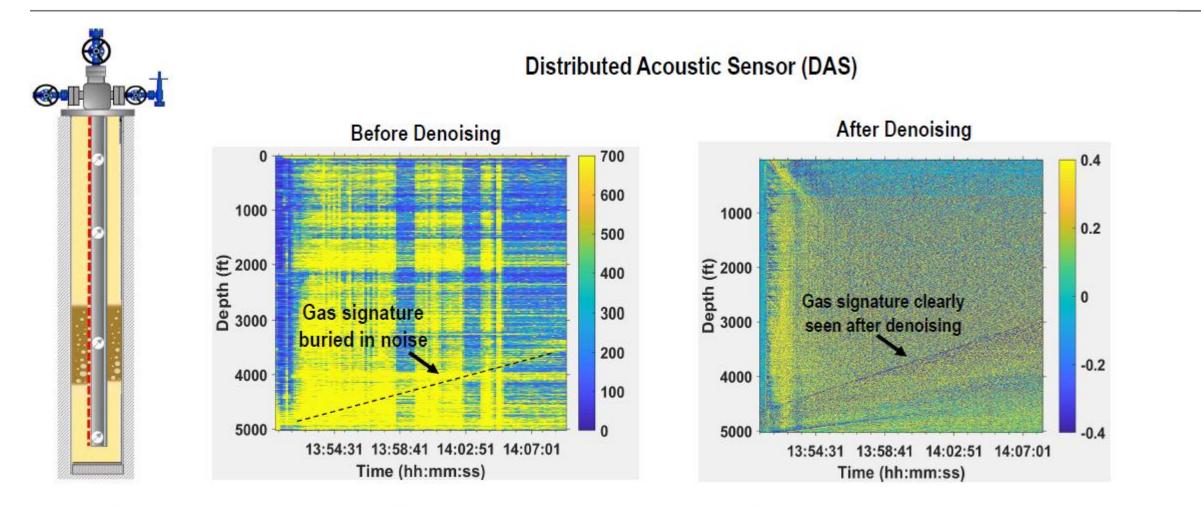
Ulta Sensitive	In-operando	Temperature in
corrosion	electrolysis	transformers
sensors (pH)	sensors	(fault prediction)
Nuclear PP isotopes detection w/in containment	Navigation without GPS (e.g. submarine)	Geologic H2 exploration (magnetometers for Olivine)

Fiber optic hacking detection (SiC) – emerging tech

Wellhead leak and safety detection Long distance transmission strain monitoring (>100km)

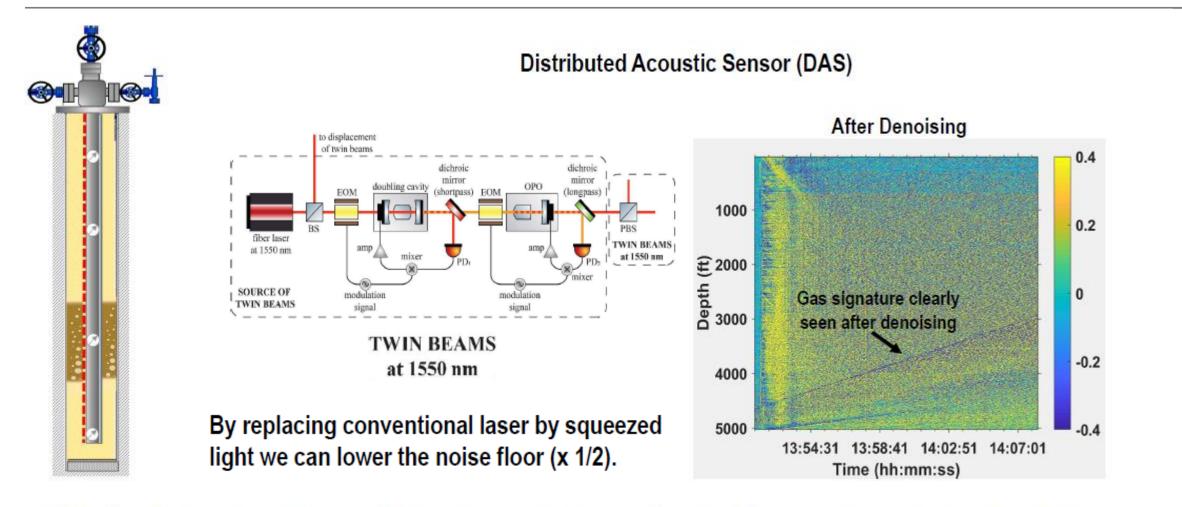
Challenges

Connectivity and/or edge computing

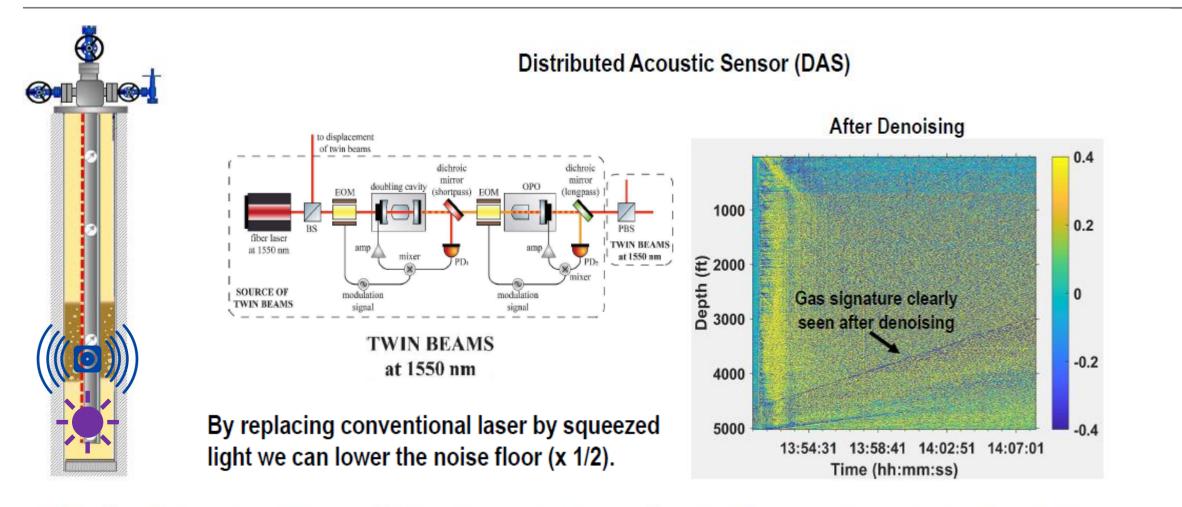

- RELIABILITY (3-500M)
- Power consumption

January 23, 2025

CHANGING WHAT'S POSSIBLE


In-well monitoring during geoH2 exploration

Publication: Tabjula, J., Sharma, Jyotsna*. 2023. Feature Extraction Techniques for Noisy Distributed Acoustic Sensor Data Acquired in a Wellbore. Applied Optics 62(16), E51-E61.


In-well monitoring during geoH2 exploration

Publication: Tabjula, J., Sharma, Jyotsna*. 2023. Feature Extraction Techniques for Noisy Distributed Acoustic Sensor Data Acquired in a Wellbore. Applied Optics 62(16), E51-E61.

In-well monitoring during geoH2 exploration

Publication: Tabjula, J., Sharma, Jyotsna*. 2023. Feature Extraction Techniques for Noisy Distributed Acoustic Sensor Data Acquired in a Wellbore. Applied Optics 62(16), E51-E61.

A rising tide lifts all boats

- Incorporating multiple modalities of sensors and using ML/AI to combine them enhances pattern fidelity
- 2. Enhanced pattern fidelity leads to better guesses for where to look
- 3. Better sensor datapoints are used to retrain the model
- Remember: There will always be things that surprise us ☺

GRACE-based Low Resolution Gravity Spatial resolution ~ 100 km x 100 km GRACE Gravity after Super-resolution Spatial resolution ~ 10 km x 10 km

Alaofin, O., Zhang, Y., Sharma, Jyotsna.*, Li, X. 2022. Cross-Modality Super-Resolution of Gravity Data for Geophysical Exploration. IEEE International Geoscience and Remote Sensing Symposium, 17-22 July

Sources

- Crawford, Scott E., Roman A. Shugayev, Hari P. Paudel, Ping Lu, Madhava Syamlal, Paul R. Ohodnicki, Benjamin Chorpening, Randall Gentry, and Yuhua Duan. "Quantum Sensing for Energy Applications: Review and Perspective." *Advanced Quantum Technologies* 4, no. 8 (August 2021): 2100049. <u>https://doi.org/10.1002/qute.202100049</u>.
- 2. Degen, C. L., F. Reinhard, and P. Cappellaro. "Quantum Sensing." *Reviews of Modern Physics* 89, no. 3 (July 25, 2017): 035002. https://doi.org/10.1103/RevModPhys.89.035002.
- Gschwendtner, Martina, Yannick Bormuth, Henning Soller, Amanda Stein, and Ronald L. Walsworth. "Quantum Sensing Can Already Make a Difference. But Where?" Journal of Innovation Management 12, no. 1 (September 24, 2024): I–XI. <u>https://doi.org/10.24840/2183-0606_012.001_L001</u>.
- 4. Alaofin, O., Zhang, Y., Sharma, Jyotsna.*, Li, X. 2022. Cross-Modality Super-Resolution of Gravity Data for Geophysical Exploration. IEEE International Geoscience and Remote Sensing Symposium, 17-22 July

