

Distributed Fiber Optic Chemical Sensing for marine CO2 Detection and Removal applications

Devika Mohan, Jahid Inam Chowdhury, Tulika Khanikar and Dr. Paul R. Ohodnicki Department of Mechanical Engineering and Materials Science, University of Pittsburgh, PA, USA.

Introduction

Accurate, low-concentration CO₂ detection is crucial for environmental monitoring, particularly in oceanographic studies. Exceptional absorption of anthropogenic-derived CO₂ emissions has decreased the pH of the surface oceans, known as ocean acidification (OA) which will significantly impact the marine environment.

EM optic sensors which are immune to Fiber interference offer more stable distributed chemical sensing with high sensitivity, resolution as well as fast responses in extreme harsh conditions.

Research Objectives

- Hybrid Distributed fiber optic pH and CO₂ Sensing for Monitoring and Verification of Marine Carbon Dioxide Removal Applications
 - > Quantitative characterization of carbon-related oceanographic properties
 - \blacktriangleright Distributed Chemical (pH and CO₂) Sensing (DCS) using sensing layer integrated fibers
 - > Selection and synthesis of polymer-based sensing layers and additives for pH and CO_2 sensing
 - \blacktriangleright Demonstration of distributed pH and CO₂ sensing in seawater application

Initial specifications for evanescent-wave-based distributed sensing

	Distributed pH sensing	Distribu
Range	pH 5.00 - pH 9.00 (point)	200 –
Resolution	0.01 pH (point)	+/-
Spatial range	$\geq 1 \mathrm{Km}$	
Spatial resolution	$\leq 5m$	
		-

Acknowledgments: University of Pittsburgh, ARPA-E, NETL, SOFAR, OFS

UNIVERSITY OF PITTSBURGH INFRASTRUCTURE SENSING

uted CO₂ sensing

1500 ppm (point) 5 ppm (point)

 ≥ 1 Km

 $\leq 5m$

Fiber Bragg Grating (FBG) sensor

Sensing materials for CO₂ sensing

Material	Refractive Index	Hydrophobicity	CO2 Detection Limit	Notab Propert
Polymer	~1.41	High	To Be Determined	Biocompati flexible
MOF (Metal- Organic Framework)	~1.4	Moderate	TBD	High surfac area, tunab porosity

Future Work

- \succ Conduct long-term testing to evaluate sensor stability in varying environmental conditions.

References

- https://pubs.acs.org/doi/abs/10.1021/acssensors.7b00808?ref=vi_sensors-and-industry
- 2. https://pubs.acs.org/doi/10.1021/acs.est.2c02723?ref=pdf

Primary pH sensing mechanisms

pH sensing layer	Synthesis method	Compatibility with reel-to-reel coating	Advantages
se sensing layer ix + indicator dye	Entrapment of indicator dye in sol gel matrix	Could be (Dip coating)	Promote hydrophobicity, reduce dye leaching, reduce film cracking, fast response
elling polymers	Oxidative polymerization	May not be (In situ polymerization)	Excellent environmental stability, resistance to solvent, Absorption coefficient in visible and NIR region
	Photopolymerization	Yes (Dip coating)	Excellent linearity over pH $5-9$, stability, repeatability and fast response

Synthesis of CO₂ sensing layer and coating

- 1. Polymer Preparation: Mix with curing agents at a certain weight ratio.
- 2. Incorporation of Fillers: Add ten wt% of MOFs; ensure thorough mixing.
- **Coating**: Coat optical fiber with the mixed matrix material.
- 4. Curing: Cure the coated fiber in a controlled environment.

> Explore additional sensing materials compatible with reel-to-reel coating and demonstration of distributed sensing

FBG or

interfero

meter

Broadband Light

source

Analyzer