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Technology Summary Laser-Heated Pedestal Growth (LHPG)

• New single-crystal fibers withstand harsh conditions

• Distributed optical interrogation enables precise core and coolant control

• Allows measurement of loop temperatures, piping strain, or other important parameters

• Reactor automation accelerates Molten Salt Reactor designs, ushers in a new paradigm 
of distributed core-monitoring

• Sensor fibers produce thousands of data points to aid reactor designers or improve 
reactor operational awareness
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• Slow process (mm/min)

• Grows pure crystals (no cladding)
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Dopant Additions via Regrowth of Sol-gel Coated Fiber
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• Grow cladded fibers with two-stage LHPG

• Sapphire or yttrium aluminum garnet (YAG)

• Sol-gel (or other) dopant additions, such as Ti, Cr, and Ce

• Evaluate materials' compatibility in energy systems

• Improve fiber performance

Automatic Dopant Segregation through LHPG. Top left: 
Electron probe microanalysis map of Al concentration in 
sapphire fiber; Top right: EPMA map of Ti concentration; 

Bottom left: Scanning electron image of fiber.
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Integrated Raman DTS System and SOFC Tests
• Introducing the NETL Raman distributed temperature sensor (DTS)

• Pulsed ~350 ps, 532 nm green laser

• Excites Raman scattering as pulse propagates

• Collects Raman with fast avalanche photodiodes 

• Optics designed for sapphire or yttrium aluminum garnet (YAG) fiber

• First interrogator for single-crystal-fiber

• First interrogator produced by NETL’s Interrogator Development Program

Concentrations of Ti and Al across fiber showing 
clear substitution of Al with Ti.

Test of fiber-based H2 sensor in a solid oxide fuel cell (SOFC). 
Bottom Left: Inside of SOFC in which the fiber sensor is inserted; 

Bottom Right: Raman DTS system and SOFC; Top Right: 
Temperature curves measured via the Raman DTS.
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