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Quantum Sensing for Energy Applications

* Quantum sensing is creating potentially transformative Quantum Information Science (QIS)
opportunities to exploit intricate quantum mechanical
phenomena in new ways to make ultrasensitive / !
measurements of multiple parameters. Pilars | quantum Quantum Quantum Quantum

. . . . Sensing Networking Simulations Computing

* A growing interest in quantum sensing has created

opportunities for its deployment to improve processes Energy system Energy system Material sciences Material sciences

Energy resilience resilience

pertaining to energy production, distribution, and Applications | .o st e — e e
consumption. Nuclear energy Nuclear energy
NETL is leveraging experimental and computational ererersy Hickarenesy
guantum tools to enhance sensitivity of hybrid
guantum-classical ultrasensitive sensors for the Quantum for Energy Systems and Technologies Electicty utlization

detection of hydrocarbons and rare earth elements AL A e o o T 2 e )

(RE Es ) * Crawford et al., Adv. Quantum Technol. 4(2021)210049.
| * Paudel et al., Adv. Quantum Technol. 6(2021)2300096.

Energy infrastructure
optimization

Nanodiamond (ND)/Metal-Organic Framework (MOF) Composites
Functionalization of nanodiamonds (NDs) with a porous coating provides a flexible scaffold for selective analyte
uptake for quantum sensing. Quantum sensing properties are preserved in a metal organic framework (MOF)

embedded ND and enhanced optically-detected magnetic resonance (ODMR) and spin relaxometry performances are
observed using a custom-built optical setup. RF Generators Comparison

Shugayev, Crawford, et al, Chem. Mater. 33(2021)6365-6373.
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A Quantum Manometer
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Hydraulic fracturing of clay, sand, and rocks

requires fluid injection under tens of MPa

pressure through high-pressure wellbores. ‘

Can monitor deep geological CO, storage and BT No.of Coumotecule A1 afry

seismic vibrations that trigger earthquakes It is possible to detect the presence or absence of CO,/CH,/N, and their

(stress could reach up to 10-15 MPa). co.rmentration levels in porous materials, such as ZIF-8, using nuclear
spins.
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Probing Liquid Samples Using NV Center and Nuclear
il I Wethesd Magnetic Resonance

[FFwom =% wan £} It has been shown that UiO-66 grown on a
S — NV diamond can realize the confinement of
1 | nanoscale volumes of liquid-state sample
o | Ay f Qs nuclei near the NV-quantum sensors for
o g\thmdphr ' nuclear magnetic resonance spectroscopy

12.0
each cycle, and opening pressures at the manometer (open squares) ~d 1 1 Shallow NV Ensemble Layer
versus depth only for the first cycle L] J.I Microfluidic channel a ppllcatlons' * Liu et al. Nano Lett 22[2022)9875—9882
’ . .

Paudel, Shi, Hopkinson, Steckel, Duan, React. Chem. Eng. 6(2021)990-1001.
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M. Marchi, et al, J. Geotech. Geoenviron. Eng. 140(2014) 04013008.

Hybrid Quantum-Classical Sensing: Advantages and Scopes

The application of rapidly evolving quantum technologies to real-world
systems is challenging. Taking stock of the current state-of-the-art technology
in sensing and identifying potential energy sector problems that could benefit

Quantum Materials

from quantum sensing represents a key step forward. %m
On

FOSSIL ENERGY WORKSHOP ON /

QUANTUM BV Strategy on Quantum S )

Sonsing Techniques

o~ " e
INFORMATION Information Science e g i o
j Quantum i
(04/15/2019) Sensing | W
NIV TN o Te o NETL key initiative on QIS £ 3«: >i i
JULY 2020 ,S & p . Energy Applications ‘/ -
a:"
@
60 06
0®®@e
@ ENERGY | 21 .oy | BT B et Api e oy el
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Traditional Sensors

Provide wide bandwidth
and range
High update rate and hig

Quantum Sensors
* Provide extreme accuracy
without error or noise
h (Typically, bandwidth is a Hz

dynamic range in the data (one per second))

collection ~ 8 nT/sqrt(Hz) @ T =300 K
Sensitivity: ~ uK/sqrt(Hz) @ 170-700 K
~1 nm/°Cto 3 nm/°C  Low update rate but highly

~ 100 nm/mT accurate for the measurement

~An ~ 10"1°RIU/\/Hz
Simple and low cost
Slow responses (*ms)

at a given point
* Ultrahigh sensitivity

- ‘1{;;.\'(- —'?’% aux W
May not be simple but low cost ""5.- ' 10>

* Extremely fast (ns)
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Color Centers in Nanodiamond

« Atomic impurity (N, Si, Sn, etc.) and carbon
vacancy in a diamond lattice: spin qubits

- Information stored in spin states are optically
readable:
* Optically detected magnetic resonance

(magnetometry, thermometry, electrometry)

* Spin relaxometry (ion and pH sensing)
* Zero phonon line emission (thermometry)

* Room temperature operation
1>

r

5 1-1>

Solid state quantum system

Modeling of Diamond with Nitrogen Vacancy (NV) Center for Field and Pressure Sensing

a'fa=b"/b=1014

 Changes exist in the electronic and optical properties of . _&/a=b/b=10074
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, . , " . ST =T —er W1y =Dy + M +\/( B)2+ M, + M,* 190 — Leversnitt
bulk diamond with N impurities and/or N with a carbon (C) J = ) 7 T T e e R Loo| - bove s
vacancy defect that can utilized for sensing-related :.— Spin splitting energy required to get pressure sensitivity o
i J R = . e
d pplications. " 1 . [ 14, ‘é ol _ Zerofield splittingline
« Sensitivity at the nanoscale can be achieved using NV — i — ] S s
t u diamond. NV center-based h |g o i e S T L NV dipole orenfaton along (111 e | :
centers in diamond. center-based sensors show almos _ dfa=b'/b=0. _Ffa=b/b=0951 ~100
: : " === %5%%% Pressure sensitivity 145 = ﬁ o ——El ] 28F =
few order of magnitude improvement over traditional 2Py Tr Vo T i +1 ~150
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N NV dEfECt'?E "l 1 . FOr 0y = ayy~25 GPa, the conduction band edge shift, AE,,~ 60 meV t direction with applied stress along [100]
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Paudel, Lander, Crawford, Duan, Nanomaterials 14(2024)675. Both a and b were changed simultaneously. Shugayev et al., Chem. Mater. 33(2021)6365-6373. Bockstedte, et al., npj Quantum Mater. 3(2018)331.
Spoof Plasmons for Enhanced ND Emission Hong-Ou-Mandel Effect Quantum Sensor Comparison with Traditional Optical Sensors
Microwave interactions are crucial for many quantum Theoretical research indicates that by using superradiant Compare resolve frequency per unit pressure
experiments, but the weak spontaneous emission of quantum near-field coupled emitters positioned across a Band shift per unit GPa, 2E ~ 2.4 B B Ry -
. . . . . cpe . . . . 3 . | spinievel SNt /Sspill runi
emitters makes implementation challenging. Here, significant beamsplitter gap, the coincident emission source required meV from the bandstructure ggcfo P © PiTbe
.. . . . calculations
emission enhancement (up to 10!!) wusing microwave spoof for Hong-Ou-Mandel interference can be created locally.
. . . ) ) o 3 x 105 MHz/Gpa ~2-4 MHz/GPa
plasmon (SPP) waveguides is demonstrated. Such a setup can be integrated into a practical sensor setup 2/GP
5 100 for qguantum sensing applications. o . : :
. & app * Quantitatively this is approximately a fourth order of magnitude
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Shugayev, Devkota, Crawford, Lu, Buric, Adv. Quantum Technol. 4(6)(2021) 2000151.
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Shugayev, Lu, Duan, Buric, AVS Quantum Science, 4 (2022)034402.

improvement over traditional optical sensors!

ows a superiority of stress sensitivity behavior that could
ieved by manipulating the ground state spin levels in NV
nanodiamond over the traditional optical sensor based

band edge or band gap shifting.
Paudel, Lander, Crawford, Duan, Nanomaterials 14(2024)675.
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