

COLLABORATION WORKSHOP

Advanced Sensors for In-Situ Amine Degradation Monitoring in Post-Combustion Carbon Capture

Matthew M. Brister^{1,2}; Alexander Shumski^{1,2}; Jeffrey Culp^{1,2}; Chet R. Bhatt^{3,4}; Ruishu F. Wright¹ ¹National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, PA 15236, USA; ²NETL Support Contractor, 626 Cochran Mill Road, Pittsburgh, PA 15236, USA; ³National Energy Technology Laboratory, 3610 Collins Ferry Road, Morgantown, WV 26505, USA; ⁴NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26505, USA; ⁴NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26505, USA; ⁴NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26505, USA; ⁴NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26505, USA; ⁴NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26505, USA; ⁴NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26505, USA; ⁴NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26505, USA; ⁴NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26505, USA; ⁴NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26505, USA; ⁴NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26505, USA; ⁴NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26505, USA; ⁴NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26505, USA; ⁴NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26505, USA; ⁴NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26505, USA; ⁴NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26505, USA; ⁴NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26505, USA; ⁴NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26505, USA; ⁴NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26505, USA; ⁴NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26505, USA; ⁴NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26505, USA; ⁴NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26505, USA; ⁴NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26505, USA; ⁴NETL Support Contra

- Oxidative: absorber, cross exchanger
- Thermal: stripper
- Caused by flue gas contaminants

Capture Center (NCCC) Slipstream Solvent Test Unit (SSTU)

Problem Statement: 1) Solvent degradation is hindering large-scale deployment of amine-based carbon capture. Amine solvent degradation associated costs can be significant compared with the cost to monitor. 2) Existing monitoring methods usually involve sampling from the process lines and sending samples to laboratories for analysis using expensive instruments.

References

[1] Madejski, P.; et al., Energies (Basel) **15**(3) (2022).

Control 72, 138-151 (2018).

(2015). [4] Gouedard, C.; et al., International Journal of Greenhouse Gas [10] van Eckeveld, A. C., et al., Ind Eng Chem Res 53(13), 5515–

Control 10, 244–270 (2012). [5] Lepaumier, H.; et al., Ind Eng Chem Res 48(20), 9061–9067 [11] Lv, B., et al., Environ Sci Technol 49(17), 10728–10735 (2009).

[6] da Silva, E. F.; et al., Ind Eng Chem Res 51(41), 13329–13338 (2012).

[7] Ling, H.; et al., Sep Purif Technol 212, 822-833 (2019). [2] Cuccia, L.; et al., International Journal of Greenhouse Gas [8] Morken, A. K., et al., Energy Procedia 114, 1245–1262, Elsevier Ltd (2017).

[3] Dutcher, B.; et al., ACS Appl Mater Interfaces 7(4), 2137–2148 [9] Flø, N. E., et al., Energy Procedia 114, 1307–1324, Elsevier Ltd (2017).

5523 (2014). (2015).

Disclaimer: This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

UNIVERSITY OF PITTSBURGH INFRASTRUCTURE SENSING

State-of-the-Art Monitoring

Physical Parameters

Chemical Parameters

ble 2.	Physical	monitoring	parameters	for
SCC ²⁻⁶				

ocation	Equipment	System Parameter Monitoring	
1,2,3	Pressure Gauge	Pressure of Gas and Liquids	
1,2	Volumetric Flow Rate	Rate of Gaseous Flow	
4,5,6,7	Viscosity	Flow Rate of Solvent	
4,5,6,7	Temperature	Temperature of Solvent	

Monitoring locations for Tables 2 & 3 are indicated in Figure 1.

Technology Gap

- Cost of analysis instrument
- Periodic sampling
- Point sensing
- Sensitivity to low-concentration degradation
- products
- Lack of monitoring of trace toxic metals

Table 3. Chemical monitoring parameters for PSCC²⁻⁶ and potential equipment cost¹⁰

Location	Equipment	Chemical Composition Monitoring	Potential Cost
1	pH Meter	Basicity	\$3,000
1	UV	SO ₂ , NO ₂	\$10,000
1	Total Organic Carbon Analyzer	CO ₂	\$3,000
2,5,6	FTIR	CO_2 , H_2O , NH_3 , NO , NO_2 , SO_2 , CH_2O , C_2H_4O , Amines	\$100,000
2,5,6	NDIR	CO ₂	\$20,000
2	Paramagnetic	O ₂	\$8,000
3,4	GC/MS	CO ₂ , O ₂ , N ₂ , H ₂ O	\$100,000
3,4	LC/MS	CO ₂ , O ₂ , N ₂ , H ₂ O	\$50,000
2,4	Electric Conductivity	O ₂ content	\$1,000
5,6	Single Ion Monitoring	Mass Spectrometry	< \$50,000
5,6	Electric Low- Pressure Impactor	Aerosol Measurements (Size Distribution and Count)	

Key Parameters for Amine Degradation Monitoring

Direct Monitoring

- Amine Solvent Color Change⁹
- Amine degradation leads to color changes Amine Concentration in Water^{5,8}

pH Change¹¹

- Indicates CO_2 loading; CO_2 dissolution into water; heat stable salt neutralization
- **Degradation Products Detection**⁸ Nitrate, sulfate salts, nitrosamine, ammonia

Indirect Monitoring

Temperature Monitoring⁸

- Related to thermal degradation
- O₂ Monitoring
- Oxidative: absorber, cross exchanger
- O_2 concentration: 5-10 ppm in solvents
- Monitoring of Flue Gas Contaminants

• SOx, NOx, etc. **Toxic Trace Metal Ion Monitoring**

Trace Metals: Hg, As, Se, Cr

Figure 2. Examples of an amine solvent system degradation over time.⁹

Figure 3. Performance of CO₂ absorption into MEA solution over time.

In-Situ Optical Fiber Sensors Installation at NCCC

> Gas Phase:

- Installed CO₂ Sensors
- 2 Locations
- Before & After Absorber
- > Liquid Phase:
- Installed Amine Sensors 4 Locations
- Cold & Hot Rich Hot & Cold Lean

Installation of Amine **Degradation Sensors** onto SSTU in March 2024

Summary

In-situ monitoring with NETL's sensor capabilities has been developed and deployed into the post-combustion carbon capture streams at National Carbon Capture Center (NCCC). These sensors will provide feedback on the carbon capture efficiency, solvent health, and reduce operational costs.

- Developed optical fiber-based sensors for amine degradation and CO₂ monitoring.
- Installed optical fiber-based sensors into the slipstream solvent test unit (SSTU) at NCCC.
- Updated previous CO₂ design to 3D-printed CO₂ sensor for ease of deployment and reduction in sensing volume.
- Revised amine prototype design to improve resistance of ferrules to amine exposure.
- Working on quantitative calibration of amine degradation sensor in the lab.

Next Steps:

- 1. NCCC solvent flow under CO_2 capture conditions will resume, following ongoing repairs to the SSTU solvent line.
- 2. Monitor long-term CO_2 capture performance and solvent degradation
- 3. Verify optical fiber results against chemical analysis of aliquots and NCCC capture efficiency data.

