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Materials and Sensing Platforms for Luminescence-Based Sensing of Economically Critical Metals
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Critical Metals are Essential to Emerging Energy Technologies

Emerging technologies within the energy
sector are creating significant increases in
demand for the metals that power these
technologies. In many cases, global
production of these metals is controlled by a
handful of countries, creating significant
domestic supply chain vulnerabilities. This has
spurred massive efforts to develop a robust
domestic supply of these economically critical
metals, both from conventional sources such
as mining as well as unconventional sources
such as coal waste. Slow and expensive
characterization costs for metals are a critical
barrier for domestic metals production. We
relieve this pain point by developing low-cost,
portable optical sensors for rapid metals
analysis during prospecting and processing.

Vanadium China ZAF
Lithium Australia CHL  JEIa¥A
Graphite China MOZ ' BRA
Cobalt Congo, D.R. ORI AUS
Molybdenum China USA
Chromium South Africa TUR
Aluminum China IND RUS
Lead China AUS USA
Manganese South Africa GAB
Copper Chile
Nickel Indonesia
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Sources: US Geological Survey - Mineral Commodity Summaries 2021; IMF staff calculations.

MINERALS USED IN ELECTRIC CARS
COMPARED TO CONVENTIONAL CARS
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https://www.cheddar.com/media/evs-gobble-up-rare-earth-minerals-as-miners-struggle-to-keep-up/

Development of Compact, Low-Cost Sensor Platforms

Through both external collaborations and in-house
suite of portable, low-cost sensor devices for anal

development, we have produced a versatile
ysis of liquid and test strip samples. These

devices typically exhibit similar performance to commercial systems at a significantly lower cost.
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Development of Luminescent, Responsive Sensor Materials

The detection of trace quantities
of target metals in complex
environments such as mining
process streams or acid mine
drainage poses a multitude of
challenges, from low pH levels to

high concentrations of
potentially interfering non-target
metals. Overcoming these
challenges requires the

development of advanced
materials that are not only very
sensitive, but also  highly
selective. Moreover, the sensing
material must be able to operate
in acidic conditions for practical
deployment.
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Metal-Organic Framework Film Aluminum Sensor
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Metal-Organic Framework Sensitizer for Rare Earths
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Detection of Trace Critical Mineral Concentrations
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With sensing materials
and platforms in hand,
key performance figures
of merit including
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SenSlthltV d nd Intensity comparison (A) and emission spectra (B) of the aluminum sensor exposed to common

Selectivity are eva | uated metals. Good agreement between emission intensity and aluminum concentration is observed in
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real samples (C) recorded using a portable sensor. Detection limits of 120 ppb were obtained.
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Emission spectra (A), Stern-Vomer plot (B) and intensity vs. time (C) plots for the cobalt sensor
measured using the portable sensor. Rapid and sensitive (limit of detection = 700 ppb) are recorded
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REE Limit of Detection Limit of
Sensitized (ppb) Quantification (ppb)
Tb 5.7+0.6 18+2
Dy 170+ 10 550 £ 30
Sm 184 6 600 £ 100
Eu 18+4 60 £ 10
Yb 260+ 6 900 £ 20
Nd 100+ 2 3407

Top: MOF immobilized on an optical fiber for enhanced rare earth detection.
Bottom: limits of detection and quantification for the rare earths.
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